Rodgers4350 FR4 Prototyp PCB z mieszanym dielektrycznym hybrydowym układaniem
Informacje ogólne:
Materiał podstawowy: rogers 4350 0,203 mm+fr4
Warstwa:4
Wykończenie powierzchniowe:Złoto zanurzone
Rozmiar deski: 15,9*8,5 cm
grubość deski końcowej:1.5 mm
Min. szerokość śladu:0.2 mm
Maska lutowa i jedwab: Tak
Zestaw pliku:
Czas produkcji prototypu: 8-10 dni
Cztery warstwy z trzema rdzeniami, obliczyć jako 8 warstw. fałszywe 8 warstw
Stworzenie mieszanej konstrukcji wysokiej częstotliwości może obniżyć koszty, gdy potrzeba dielektryki RF jest lokalna i tylko między niektórymi warstwami.Możliwe jest również łączenie materiałów PTFE () z FR4.
Sekcja poprzeczna mieszanego Rogers 4350B, FR4 o wysokim Tg i wbudowanej monety C:
Produkcja wielowarstwowych płyt PCB
Produkcja wielowarstwowych płyt PCB obejmuje kilka etapów, od projektowania i wytwarzania po montaż i testowanie.
1Projektowanie: Proces projektowania polega na tworzeniu schematu i układu PCB przy użyciu specjalistycznego oprogramowania do projektowania PCB.umieszczenie częściZasady i ograniczenia projektowe są ustalone w celu zapewnienia możliwości produkcji i niezawodności.
2,CAM (Computer-Aided Manufacturing) Processing: Po zakończeniu projektowania płytek PCB podlegają one przetwarzaniu CAM. Oprogramowanie CAM przekształca dane projektowe w instrukcje produkcyjne,w tym generowanie plików Gerber, plików wiertniczych i informacji specyficznych dla warstwy wymaganych do produkcji.
3Przygotowanie materiału: Proces wytwarzania PCB rozpoczyna się od przygotowania materiału.Płyty foliowe z miedzi są również przygotowywane w wymaganych grubościach dla wewnętrznych i zewnętrznych warstw.
4Przetwarzanie warstwy wewnętrznej: Przetwarzanie warstwy wewnętrznej obejmuje serię kroków:
a. Czyszczenie: folia miedziana jest czyszczona w celu usuwania wszelkich zanieczyszczeń.
b. Laminacja: folia miedziana jest laminowana do materiału rdzeniowego przy użyciu ciepła i ciśnienia, tworząc panel z powierzchniami pokrytymi miedzią.
c. Obrazowanie: na panel nakłada się warstwę fotorezystyczną zwaną fotorezystyczną.definiowanie śladów miedzi i podkładek.
d. Ety: Panel jest etyrowany w celu usunięcia niepożądanej miedzi, pozostawiając po sobie pożądane ślady miedzi i podkładki.
e. Wiertanie: W panelu wiertane są precyzyjne otwory w celu utworzenia przewodów i otworów do montażu komponentów.
5Przetwarzanie warstwy zewnętrznej: Przetwarzanie warstwy zewnętrznej obejmuje podobne kroki do wewnętrznej warstwy, w tym czyszczenie, laminowanie, obrazowanie, grafowanie i wiercenie.obróbka warstwy zewnętrznej obejmuje również nakładanie na powierzchnię warstw lutowych i jedwabnoprawnych w celu ochrony i identyfikacji części.
6Wielowarstwowe laminowanie: po przetworzeniu warstw wewnętrznych i zewnętrznych, są one ułożone razem z warstwami materiału prepregowego.Następnie stos umieszczany jest w prasie hydraulicznej i poddawany ciepłu i ciśnieniu, aby połączyć warstwy, tworząc solidną wielowarstwową strukturę.
7Płaty i wykończenie powierzchniowe: Płatowane otwory (przewody) są elektroplastyzowane miedzią w celu zapewnienia łączności elektrycznej między warstwami.Powierzchnie miedziane są następnie obróbane wykończeniem powierzchni, takich jak cyna, lutowanie bez ołowiu lub złoto, aby chronić je przed utlenianiem i ułatwiać lutowanie podczas montażu.
8Routing i V-Cut: po wielowarstwowej laminacji panel PCB jest przeprowadzany do oddzielenia poszczególnych PCB.umożliwiające łatwe oddzielenie PCB po montażu.
9Zgromadzenie: Zgromadzone elementy i lutowanie odbywają się na wielowarstwowym płytce PCB. Polega to na umieszczeniu elementów elektronicznych na płytce PCB, lutowaniu ich do miedzianych podkładek,i wszelkich niezbędnych procesów lutowania z powrotem lub falą.
10Testy i inspekcje: Po zakończeniu montażu PCB poddawane są różnym procedurom testowym i inspekcyjnym w celu zapewnienia funkcjonalności, ciągłości elektrycznej i jakości.Obejmuje to zautomatyzowaną kontrolę optyczną (AOI)., badania funkcjonalne i inne badania zgodnie ze specyficznymi wymaganiami.
Opakowanie i wysyłka: Ostatni krok polega na pakowaniu PCB w celu ochrony ich podczas transportu i wysyłce do pożądanego miejsca przeznaczenia.
Wielowarstwowe układy PCB
Układanie wielowarstwowego PCB odnosi się do układu i porządku warstw w konstrukcji PCB.,Specyficzna konfiguracja układu stack-up zależy od wymagań zastosowania i ograniczeń projektowych.Oto ogólny opis typowego wielowarstwowego układu PCB:
1Warstwy sygnału: Warstwy sygnału, znane również jako warstwy routingu, są miejscem, w którym znajdują się miedziane ślady, które przenoszą sygnały elektryczne.Liczba warstw sygnału zależy od złożoności obwodu i pożądanej gęstości PCBWarstwa sygnału jest zazwyczaj umieszczona pomiędzy płaszczyznami zasilania i uziemienia w celu poprawy integralności sygnału i zmniejszenia hałasu.
2Płyty zasilania i uziemienia: warstwy te zapewniają stabilne odniesienie dla sygnałów i pomagają rozdzielić zasilanie i uziemienie w całym PCB.Podczas gdy płaszczyzny naziemne służą jako ścieżki powrotne dla sygnałówUmieszczenie płaszczyzn zasilania i uziemienia obok siebie zmniejsza powierzchnię pętli i minimalizuje zakłócenia elektromagnetyczne (EMI) i hałas.
3Warstwy prepregowe: Warstwy prepregowe składają się z materiału izolacyjnego impregnowanego żywicą.Warstwy prepreg są zazwyczaj wykonane z żywicy epoksydowej wzmocnionej włóknem szklanym (FR-4) lub innych specjalistycznych materiałów.
4Warstwa rdzenia: Warstwa rdzenia jest centralną warstwą układu PCB i jest wykonana z stałego materiału izolacyjnego, często FR-4.Warstwa rdzeniowa może również obejmować dodatkową energię i poziomy naziemne.
5Warstwy powierzchniowe: Warstwy powierzchniowe są najsterniejszymi warstwami PCB i mogą być warstwami sygnału, płaszczyznami zasilania/ziemi lub ich połączeniem.Warstwy powierzchniowe zapewniają połączenie z komponentami zewnętrznymi, złącza i podłogi lutowe.
6Warstwa maski lutowej i warstwy żeliwa: Warstwa maski lutowej nakłada się na warstwy powierzchniowe w celu ochrony śladów miedzi przed utlenianiem i zapobiegania powstawaniu mostów lutowych podczas procesu lutowania.Warstwa jedwabnoprawna jest stosowana do oznakowania części, oznaczeń odniesienia oraz innych tekstów lub grafik, które ułatwiają montaż i identyfikację PCB.
Dokładna liczba i układ warstw w wielowarstwowym układzie PCB różnią się w zależności od wymagań projektowych.i warstwy sygnałówPonadto kontrolowane ślady impedancji i pary różnicowe mogą wymagać specjalnych układów warstw w celu osiągnięcia pożądanych właściwości elektrycznych.
Ważne jest, aby pamiętać, że konfiguracja stack-up powinna być starannie zaprojektowana, biorąc pod uwagę takie czynniki jak integralność sygnału, dystrybucja energii, zarządzanie cieplne,i możliwości wytwarzania, aby zapewnić ogólną wydajność i niezawodność wielowarstwowego PCB.
Istnieje kilka rodzajów wielowarstwowych płyt PCB, które są używane w różnych zastosowaniach.
Standardowe wielowarstwowe płytki PCB: Jest to najbardziej podstawowy rodzaj wielowarstwowych płytek PCB, zazwyczaj składających się z czterech do ośmiu warstw.Jest szeroko stosowany w ogólnych urządzeniach elektronicznych i aplikacjach, w których wymagana jest umiarkowana złożoność i gęstość.
High-Density Interconnect (HDI) PCB: PCB HDI są zaprojektowane tak, aby zapewniały większą gęstość komponentów i drobniejsze ślady niż standardowe wielowarstwowe PCB.które są przewodami o bardzo małej średnicy, które umożliwiają więcej połączeń w mniejszej przestrzeniPCB HDI są powszechnie stosowane w smartfonach, tabletach i innych kompaktowych urządzeniach elektronicznych.
Flex i Rigid-Flex PCB: tego typu wielowarstwowe płyty PCB łączą elastyczne i sztywne sekcje w jedną płytę.natomiast PCB sztywne i elastyczne zawierają zarówno elastyczne, jak i sztywne sekcjeUżywane są w zastosowaniach, w których PCB musi się zginać lub dostosować do określonego kształtu, na przykład w urządzeniach noszonych, sprzęcie medycznym i systemach lotniczych.
Sekwencyjna laminacja PCB: W sekwencyjnej laminacji PCB warstwy są laminowane razem w oddzielnych grupach, co umożliwia większą liczbę warstw.Ta technika jest stosowana, gdy duża liczba warstw, np. 10 lub więcej, są wymagane w przypadku złożonych projektów.
Metal Core PCB: Metal Core PCB mają warstwę metalu, zwykle aluminium lub miedzi, jako warstwę rdzenia.co sprawia, że nadają się do zastosowań wytwarzających znaczną ilość ciepła, takie jak oświetlenie LED o dużej mocy, oświetlenie samochodowe i elektronika mocy.
PCB RF/mikrofale: PCB RF (radiofrekwencyjne) i mikrofalowe są zaprojektowane specjalnie do zastosowań o wysokiej częstotliwości.Wykorzystują specjalistyczne materiały i techniki produkcyjne, aby zminimalizować utratę sygnałuPCB RF/Mikrofale są powszechnie stosowane w systemach komunikacji bezprzewodowej, systemach radarowych i komunikacji satelitarnej.
Wykorzystanie wielowarstwowych płyt PCB:
Wielowarstwowe płytki PCB mają zastosowanie w różnych gałęziach przemysłu i urządzeniach elektronicznych, w których wymagane są złożone obwody, wysoka gęstość i niezawodność.Niektóre powszechne zastosowania wielowarstwowych PCB obejmują::
Elektronika użytkowa: PCB wielowarstwowe są szeroko stosowane w urządzeniach elektronicznych konsumenckich, takich jak smartfony, tablety, laptopy, konsoli do gier, telewizory i systemy audio.Urządzenia te wymagają kompaktowych konstrukcji i połączeń o wysokiej gęstości, aby pomieścić liczne elementy.
Telekomunikacje: PCB wielowarstwowe odgrywają kluczową rolę w sprzęcie telekomunikacyjnym, w tym w routerach, przełącznikach, modemach, stacjach bazowych i infrastrukturze sieci.Umożliwiają one efektywne sterowanie sygnałem i ułatwiają szybką transmisję danych wymaganą w nowoczesnych systemach łączności.
Elektronika motoryzacyjna: Nowoczesne pojazdy zawierają szeroki zakres urządzeń elektronicznych do takich funkcji, jak sterowanie silnikiem, systemy infotainment, zaawansowane systemy wspomagania kierowcy (ADAS) i telematyka.Wielowarstwowe płytki PCB są używane do obsługi złożonych obwodów i zapewnienia niezawodnej wydajności w środowiskach motoryzacyjnych.
Sprzęt przemysłowy: PCB wielowarstwowe są wykorzystywane w sprzęcie przemysłowym, takim jak systemy sterowania, robotyka, systemy automatyki i maszyny produkcyjne.PCB zapewniają niezbędne połączenia między sobą do precyzyjnego sterowania i monitorowania procesów przemysłowych.
Przemysł lotniczy i obronny: Przemysł lotniczy i obronny opiera się na wielowarstwowych PCB do systemów avioniki, systemów radarowych, sprzętu komunikacyjnego, systemów sterowania i technologii satelitarnej.Te zastosowania wymagają wysokiej niezawodności, integralność sygnału i odporność na trudne warunki.
Urządzenia medyczne: Urządzenia i sprzęt medyczny, w tym narzędzia diagnostyczne, systemy obrazowania, urządzenia monitorowania pacjentów i instrumenty chirurgiczne, często wykorzystują wielowarstwowe PCB.PCB umożliwiają integrację złożonej elektroniki i pomagają w dokładnej i niezawodnej diagnostyce i leczeniu.
Elektronika energetyczna: wielowarstwowe płytki PCB są stosowane w elektrotechnice energetycznej, takich jak falowniki, konwertery, napędy silników i zasilanie.i efektywnego dystrybucji energii.
Systemy kontroli przemysłowej: PCB wielowarstwowe są wykorzystywane w systemach kontroli przemysłowej do kontroli procesów, automatyki fabryki i robotyki.Systemy te wymagają niezawodnych i wydajnych PCB, aby zapewnić precyzyjną kontrolę i monitorowanie procesów przemysłowych.
Skontaktuj się z nami w każdej chwili